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Abstract 
Accurately quantifying uncertainty in data-driven 

mechanistic models is crucial for public health 

applications. COVID-19, a complex disease with 

significant global health and economic ramifications, 

underscores this necessity. The pandemic's widespread 

infections, mortality and economic disruptions 

highlight the critical importance of understanding viral 

behavior and generating reliable short- and long-term 

forecasts of daily new cases. Machine learning and 

mathematical models are actively deployed in this 

effort.  

 

To guide disease management strategies, researchers 

have employed diverse mathematical models to analyze 

the intricate transmission dynamics of COVID-19 

under varying assumptions. This study presents the 

application of a six-compartment SEIQRD 

epidemiological model for estimating active COVID-

19 cases and deaths. Parameter estimation is achieved 

through Approximate Bayesian Computation (ABC), 

leveraging the M-nearest neighbour Sequential Monte 

Carlo ABC method which delivers the estimated 

parameter values. 
 

Keywords: SEIQRD model, Approximate Bayesian 
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Introduction 
Originating in China in December 2019, the novel 

coronavirus, COVID-19, has rapidly spread across the 

globe, impacting millions of individuals. Its inherent 

characteristics, including a high propensity for mutation and 

efficient transmission, have established COVID-19 as a 

significant threat to global public health16. Those infected, 

frequently experienced severe respiratory distress and are 

susceptible to developing serious health complications, 

particularly if they possess pre-existing chronic illnesses. 

The World Health Organization's declaration of COVID-19 

as a pandemic on March 11, 2020, underscored the 

substantial challenge in effectively controlling its spread. 

The difficulties in containment are largely attributed to the 

phenomenon of asymptomatic transmission and the 

prolonged incubation period, wherein individuals may not 

exhibit symptoms until a considerable time after infection.  

 

Mathematical modeling has proven to be an indispensable 

tool in projecting the scale and severity of disease outbreaks, 
thereby guiding the formulation of effective intervention 

strategies5. Models such as the Susceptible-Infected-

Recovered (SIR) and its more complex variations, notably 

the Susceptible-Exposed-Infected-Removed (SEIR) model, 

have been extensively employed to analyze the COVID-19 

pandemic7. For instance, Tang et al13 utilized a traditional 

SEIR model to evaluate the infectivity of COVID-19, while 

Wu et al15 developed an enhanced SEIR model to forecast 

the virus's dissemination. However, it is important to note 

that these studies often operate under the assumption that 

individuals in the exposed phase are non-infectious, a 

premise that may not accurately reflect the actual 

transmission dynamics of COVID-19.  

 

The SEIQRD model, an advanced adaptation of the 

traditional SIR framework, systematically represents 

infectious disease dynamics by categorizing the population 

into susceptible, exposed, infected, quarantined, recovered 

and deceased groups3. It achieves a practical balance 

between detailed modeling and analytical clarity, avoiding 

over-parameterization while ensuring result interpretability. 

In this study, the model's parameters are carefully chosen to 

focus on essential epidemiological factors such as 

transmission rates, incubation periods, quarantine 

efficiency, recovery rates and mortality offering valuable 

insights into COVID-19’s progression without adding 

unnecessary complexity.  

 

SEIQRD Model 
The substantial viral load in COVID-19 patients makes them 

highly infectious. Early in the disease, the virus is readily 

detectable in throat swabs, allowing for easy transmission 

through respiratory droplets. This poses a significant risk to 

those nearby, as even individuals without symptoms during 

the incubation phase can spread the virus. After infection, 

the virus multiplies within cells with symptoms typically 

appearing within 14 days. To mathematically model the 

spread of COVID-19, several simplifying assumptions are 

made.   

 

These include treating the population as closed, excluding 

births from the susceptible group, allowing for reinfection 

after recovery, assuming all contacts lead to infection and 

ignoring deaths unrelated to COVID-19. Consider that the 

total population (𝑁) of a certain area is divided into six 

compartments at time (𝑡) as Susceptible S(𝑡), Exposed E(𝑡), 

Infected I(𝑡), Quarantined Q(𝑡), Recovered R(𝑡) and Deaths 

D(𝑡).1,2 Then the population can be modeled with the system 

of differential equations: 

 
𝑑S

𝑑𝑡
=  −𝛽S(𝑡)I(𝑡) + 𝜇R(𝑡) 

 
𝑑E

𝑑𝑡
= 𝛽S(𝑡)I(𝑡) − 𝛾E(𝑡) 
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𝑑I

𝑑𝑡
= 𝛾E(𝑡) − (𝜎 + 𝜆 + 𝛿)I(𝑡) 

𝑑Q

𝑑𝑡
= 𝜆I(𝑡) − 𝜉Q(𝑡) − 𝛿Q(𝑡) 

𝑑R

𝑑𝑡
= 𝜎I(𝑡) − 𝜇R(𝑡) + 𝜉Q(𝑡) 

𝑑D

𝑑𝑡
= 𝛿I(𝑡) + 𝛿Q(𝑡) 

 

(1) 

where 𝛽, 𝜇, 𝛾, 𝜎, 𝜆, 𝛿, 𝜉  represent the rate of transmission 

from susceptible to exposed, reinfection rate, (rate at which 

an exposed person becomes infected or incubation rate) rate 

of recovery, quarantine rate, death rate and quarantine period 

respectively and S(t)  +  E(t)  +  I(t)  +  Q(t)  +  R(t)  +
 D(t)  =  N. 
 

Approximate Bayesian Computation Sequential 

Monte Carlo M nearest Neighbours 
Approximate Bayesian Computation (ABC) methods were 

developed to infer posterior distributions when evaluating 

likelihood functions which are computationally difficult or 

prohibitively expensive14. They leverage the efficiency of 

modern simulation techniques by substituting the likelihood 

calculation with a comparison between observed and 

simulated data9. The main idea is to use Baye’s theorem to 

approximate the posterior distribution with the knowledge of 

the observed data. Let 𝜋(𝜃) denote the prior distribution for 

the parameter vector 𝜃 and the likelihood function for the 

data 𝐷 be denoted by 𝑝(𝐷|𝜃), then using the Bayes theorem, 

posterior distribution of the parameter 𝜃 is proportional to 

𝜋(𝜃)𝑝(𝐷|𝜃). Now we describe the steps for the ABC SMC 

MNN method to estimate the posterior distribution for the 

parameter vector 𝜃 and get the samples from the posterior 

distribution as follows10,12 : 

 

(i) Fix the number of generations S and the number of 

samples to be simulated from the posterior distribution as N. 

(ii) Fix the tolerance value for each of the generation as 

𝑡1, 𝑡2, … , 𝑡𝑆. Now set the generation variable 𝑠 = 1.  

(iii) If the generation variable is  𝑠 > 1, select the M nearest 

neighbours of the parameter vectors 𝜃𝑠−1
𝑖 , then evaluate the 

covariance matrix Σ(𝜃𝑠−1
𝑖 , 𝑀) for all the samples 𝑖 =

1,2, … , 𝑁. 

(iv) Set the sample indicator i=1.  

(v) For the first generation i.e. for 𝑠 = 1, sample 𝜃∗∗ is 

selected from the prior distribution 𝜋(𝜃). For generation s >
1, select  𝜃∗ from the previous generation samples 

{𝜃𝑡−1
1  , 𝜃𝑡−1

2  , … , 𝜃𝑡−1
𝑁 } with the weights 

{𝑤𝑡−1
𝑁 , 𝑤𝑡−1

𝑁 , … , 𝑤𝑡−1
𝑁 } and using 𝜃∗, select a random sample 

𝜃∗∗ from the multivariate normal distribution so that 

𝜃∗∗~ 𝑁(𝜃∗, Σ(𝜃∗, 𝑀)).  

(vi) If 𝜋(𝜃∗∗) = 0, return to step (iv). Else generate the data 

𝐷̅∗∗ from the model using the parameter vector 𝜃∗∗.  

(vii) If (𝐷̅|𝐷̅∗∗)  <  𝑡𝑠 , set 𝜃𝑠
(𝑖)

= 𝜃∗∗ and set the weight of 

the accepted  sample corresponding to i  as 𝑤𝑠
𝑖 =

{
  𝜋(𝜃∗∗),                                                    𝑖𝑓 𝑠 = 1

𝜋(𝜃∗∗)

∑ 𝑤𝑠
𝑗
N(𝜃𝑠

𝑖|𝜃𝑠−1
𝑗

,∑(𝜃𝑠
𝑖,   𝑀))𝑁

𝑗=1

,                       𝑖𝑓 𝑠 > 1  

(viii) If 𝑖 <  𝑁, increase 𝑖 = 𝑖 + 1 and go to step (iv). 

(ix) Normalize the weights so that ∑ 𝑤𝑠
(𝑖)

= 1𝑁
𝑖=1 . 

(x) If s <  𝐺, set 𝑡 = 𝑡 + 1, go to step (iv).   

 

where N(. , . ) represents multivariate normal distribution 

which is used as perturbation kernel in general. Uniform 

distribution is used as non-informative perturbation kernel 

and multivariate normal distribution as informative 

perturbation kernel. Effective exploration of the parameter 

space is dependent on choices made regarding tolerance 

levels, generational counts, simulation repetitions and the 

perturbation kernel.  

 

Data and Simulations  
To analyze the evolving nature of COVID-19 over time, we 

need parameter estimation that accounts for variability6. 

Consequently, we utilize a time-dependent approach to track 

these fluctuating trends. In this study we have divided the 

data in different time windows. We modeled the COVID-19 

disease using the SEIQRD model. The data for this analysis 

came from Saudi Arabia. It covers the period from March 2, 

2020, to June 21, 2020. The data was obtained from 

Kaggle18.

 

 
Figure 1: Representing the compartmental diagram for the SEIQRD model 
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It includes daily information on active, cumulative and new 

cases, as well as deaths and recoveries. Since the parameters 

involved in the SEIQRD model are time dependent and 

varying with respect to time. we have divided data into five 

time windows. First time window starts from day 1 to day 15 

and second time window starts from day 16 to day 40, third 

starts from day 41 to day 65 and fourth starts from day 66 to 

day 85 and fifth time window starts from day 86 to day 11011. 

We used active cases and deaths as measurable data for the 

model. For the first time window, we used data for infected 

cases as I(𝑡) and deaths D(𝑡)  from day 1 to day 15 in the  

Approximate Bayesian Computation sequential monte carlo 

M-nearest neighbour sampling method for the samples of the 

parameters in the SEIQRD model.  

 

The distance metric is 𝑑(𝐷̅|𝐷̅∗∗) < 𝑡𝑠  if and only if 

√(I(𝑡) − I∗∗(𝑡))
2

< 𝑡𝑠
𝐼   & √(D(𝑡) − D∗∗(𝑡))

2
< 𝑡𝑠

𝐼   is used 

in the sampling method. The number of generation S=3 is 

used in each time window. Table 1 represents the prior 

distribution used for the parameters in the ABC SMC MNN 

sampling method. M=200 is used for the M-nearest 

neighbours.  

 

The initial values of the tolerance sequence for each time 

window is given in table 2 which is used to sample the 

parameters using ABC SMC MNN sampling method. The 

total number of population of Saudi Arabia on March 2 , 

2020 was 𝑁 = 35755176 . Initial values for infected and 

deaths compartment are taken from the available data and 

for the first time window, initial values of quarantined, 

recovered were zero. Initial value for Exposed compartment 

is taken as E(0) =  1000  and for susceptible S(0)  =  𝑁 −
I(0) − R(0) − Q(0) − D(0) − E(0)  and For subsequent 

time windows, the initial values for the exposed, quarantined 

and recovered compartments were set to the estimated values 

of these compartments from the preceding time window. 

These estimated values were derived from the SEIQRD 

model, utilizing the mean of the sampled parameters from 

the final generation of the ABC-SMC MNN sampling 

method's posterior distribution.  

 

The ABC SMC-MNN sampling method was applied for 

each time window to get the samples of the parameters from 

the posterior distribution. For each time window, the 

samples obtained from the posterior distribution in the last 

generation taking their mean value as true value of the 

parameters for the corresponding time window and using 

them in the SEIQRD model, we get the estimated value of 

the infected and deaths compartment. Table 3 represents the 

estimated values of the parameters involved in the SEIQRD 

model for each time windows. 
 

Table 1 

Representing prior distribution of the parameters used in SEIQRD model. 

  Parameter Prior distribution (Truncated Normal distribution) 

𝛽  (transmission rate) Truncnorm(lower = -0.01, upper = 0.1 , mean = 1.5e-8, sd = 1e-8) 

𝜇 ( reinfection rate) Truncnorm(lower = 0.0001, upper = 0.1, mean = 1.6e-4, sd = 1e-4) 

𝛾 (incubation rate) Truncnorm(lower = 0.000001, upper = 0.01, mean = 0.015, sd = 0.001) 

𝜎 (recovery rate) Truncnorm(lower = 0.01, upper = 0.1, mean = 0.05, sd = 0.01) 

𝜆 (quarantine rate) Truncnorm(lower = 0, upper = 0.1, mean = 0.021, sd = 0.01) 

𝛿 (death rate) Truncnorm(lower = 0.001, upper = 0.5, mean = 0.1, sd = 0.01) 

𝜉 (quarantine period) Truncnorm(lower = 0.001, upper = 0.1, mean = 0.07, sd = 0.01) 
 

Table 2 

Representing the sequence of tolerance used in the ABS SMC MNN 

Time Window Tolerance sequence (𝒕𝟏
𝑰 , 𝒕𝟐

𝑰 , 𝒕𝟑
𝑰 ) Infected Tolerance sequence ( 𝒕𝟏

𝑫, 𝒕𝟐
𝑫, 𝒕𝟑

𝑫) Deaths 

Day 1 − 15 (1𝑒4, 8𝑒3, 5𝑒2) (1𝑒3, 8𝑒2, 5𝑒2) 

Day 16 − 40 (1𝑒4, 8𝑒3, 7𝑒3) (1𝑒3, 8𝑒2, 7𝑒2) 

Day 41 − 65 (1𝑒5, 9𝑒4, 8𝑒4) (1𝑒3, 7𝑒2, 5𝑒2) 

Day 65 − 85 (1𝑒6, 8𝑒5, 1𝑒5) (1𝑒3, 7𝑒2, 5𝑒2) 

Day 86 − 110 (1𝑒6, 8𝑒5, 1𝑒5) (1𝑒3, 7𝑒2, 5𝑒2) 
 

Table 3 

Presenting the estimated values of the parameters involved in the SEIQRD model. 

Parameter Day 1-15 Day 𝟏𝟔 − 𝟒𝟎 Day 𝟒𝟏 − 𝟔𝟓 Day 𝟔𝟓 − 𝟖𝟓 Day 𝟖𝟔 − 𝟏𝟏𝟎 

𝛽 2.607926e-08 3.137336e-08 1.906792e-08 2.477616e-08 2.005747e-08 

𝜇 1.404689e-04 2.180625e-04 1.836082e-04 2.233315e-04 1.230543e-04 

𝛾 1.025117e-02 1.031941e-02 9.927145e-03 1.021641e-02 1.033123e-02 

𝜎 4.881843e-02 4.086454e-02 4.920895e-02 4.590827e-02 5.012280e-02 

𝜆 2.548353e-02 1.895990e-02 2.071212e-02 2.370133e-02 1.144448e-02 

𝛿 1.061898e-02 9.215500e-02 1.053984e-02 1.083446e-02 9.866096e-03 

𝜉 7.048349e-02 7.409066e-02 7.051973e-02 6.572828e-02 7.009715e-02 



Research Journal of Biotechnology                                                                                                         Vol. 20 (8) August (2025)  
Res. J. Biotech. 

https://doi.org/10.25303/208rjbt2320236      235 

 
Figure 2: Depicting the Active and Estimated cases 

 

Table 4 

Represents the basic reproduction number each time window. 

Time 

Window 

Day 1-15 Day 𝟏𝟔 − 𝟒𝟎 Day 𝟒𝟏 − 𝟔𝟓 Day 𝟔𝟓 − 𝟖𝟓 Day 𝟖𝟔 − 𝟏𝟏𝟎 

𝑹𝟎 10.98043 7.380998 8.473392 11.01232 10.03954 

 
Figure 2 represents the estimated and actual infected. 

Estimated cases are obtained by using the parameter values 

for each time window in the SEIQRD model. Using the 

parameter values of the last window, infected values can be 

estimated8. 

 

Reproduction Number: In infectious disease modeling, the 

basic reproduction number (𝑅0) plays a key role in analyzing 

outbreak patterns. It represents the average number of 

secondary infections caused by a single case in a fully 

susceptible population, helping to guide public health 

strategies17. However, 𝑅0 varies due to factors such as 

behavioral shifts, vaccination efforts and viral mutations. 

When 𝑅0 exceeds 1, the infection spreads widely whereas a 

value below 1 indicates a natural decline. Since 𝑅0 is highly 

sensitive to model parameters, precise estimation is 

essential. Many COVID-19 studies have employed the Next 

Generation Matrix (NGM) method for this purpose4. Basic 

reproduction number for the SEIQRD model can be given 

by 𝑅0 =  
𝛽𝑁 

𝜎+𝛿+𝜆
. Table 4 represents the basic reproduction 

number each time window. 

 

Conclusion 
In conclusion, this study successfully demonstrated the 

strong integration of the SEIQRD model with the ABC-SMC 

MNN sampling method for precise parameter estimation in 

the complex dynamics of the COVID-19 pandemic in Saudi 

Arabia. This study established a robust framework for 

analyzing and forecasting the disease's trajectory by 

carefully computing the time-varying basic reproduction 

number (R₀), a key indicator of disease transmission. It also 
accurately estimates essential parameters such as infection, 

recovery and mortality rates. Given the pandemic's changing 

nature, adaptive models are critical and the time-varying 

technique used here adequately reflects these shifts. The 

findings of this study will have major practical implications, 

providing Governments and public health authorities with a 

data-driven tool for informed decision-making. These 

results, which provide a more accurate and thorough picture 

of the pandemic's course, can help direct targeted actions, 

improve resource allocation and strengthen public health 

policies to reduce the disease's impact on the population. 
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