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Abstract

Accurately quantifying uncertainty in data-driven
mechanistic models is crucial for public health
applications. COVID-19, a complex disease with
significant global health and economic ramifications,
underscores this necessity. The pandemic's widespread
infections, mortality and economic disruptions
highlight the critical importance of understanding viral
behavior and generating reliable short- and long-term
forecasts of daily new cases. Machine learning and
mathematical models are actively deployed in this
effort.

To guide disease management strategies, researchers
have employed diverse mathematical models to analyze
the intricate transmission dynamics of COVID-19
under varying assumptions. This study presents the
application of a six-compartment SEIQRD
epidemiological model for estimating active COVID-
19 cases and deaths. Parameter estimation is achieved
through Approximate Bayesian Computation (ABC),
leveraging the M-nearest neighbour Sequential Monte
Carlo ABC method which delivers the estimated
parameter values.
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Introduction

Originating in China in December 2019, the novel
coronavirus, COVID-19, has rapidly spread across the
globe, impacting millions of individuals. Its inherent
characteristics, including a high propensity for mutation and
efficient transmission, have established COVID-19 as a
significant threat to global public health®. Those infected,
frequently experienced severe respiratory distress and are
susceptible to developing serious health complications,
particularly if they possess pre-existing chronic illnesses.
The World Health Organization's declaration of COVID-19
as a pandemic on March 11, 2020, underscored the
substantial challenge in effectively controlling its spread.
The difficulties in containment are largely attributed to the
phenomenon of asymptomatic transmission and the
prolonged incubation period, wherein individuals may not
exhibit symptoms until a considerable time after infection.

Mathematical modeling has proven to be an indispensable
tool in projecting the scale and severity of disease outbreaks,
thereby guiding the formulation of effective intervention
strategies®. Models such as the Susceptible-Infected-
Recovered (SIR) and its more complex variations, notably
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the Susceptible-Exposed-Infected-Removed (SEIR) model,
have been extensively employed to analyze the COVID-19
pandemic’. For instance, Tang et al*® utilized a traditional
SEIR model to evaluate the infectivity of COVID-19, while
Wau et al*® developed an enhanced SEIR model to forecast
the virus's dissemination. However, it is important to note
that these studies often operate under the assumption that
individuals in the exposed phase are non-infectious, a
premise that may not accurately reflect the actual
transmission dynamics of COVID-19.

The SEIQRD model, an advanced adaptation of the
traditional SIR framework, systematically represents
infectious disease dynamics by categorizing the population
into susceptible, exposed, infected, quarantined, recovered
and deceased groups®. It achieves a practical balance
between detailed modeling and analytical clarity, avoiding
over-parameterization while ensuring result interpretability.
In this study, the model's parameters are carefully chosen to
focus on essential epidemiological factors such as
transmission  rates, incubation periods, quarantine
efficiency, recovery rates and mortality offering valuable
insights into COVID-19’s progression without adding
unnecessary complexity.

SEIQRD Model

The substantial viral load in COVID-19 patients makes them
highly infectious. Early in the disease, the virus is readily
detectable in throat swabs, allowing for easy transmission
through respiratory droplets. This poses a significant risk to
those nearby, as even individuals without symptoms during
the incubation phase can spread the virus. After infection,
the virus multiplies within cells with symptoms typically
appearing within 14 days. To mathematically model the
spread of COVID-19, several simplifying assumptions are
made.

These include treating the population as closed, excluding
births from the susceptible group, allowing for reinfection
after recovery, assuming all contacts lead to infection and
ignoring deaths unrelated to COVID-19. Consider that the
total population (N) of a certain area is divided into six
compartments at time (t) as Susceptible S(t), Exposed E(t),
Infected I(t), Quarantined Q(t), Recovered R(t) and Deaths
D(t).}? Then the population can be modeled with the system
of differential equations:
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where B,u,y,0,1,8,& represent the rate of transmission
from susceptible to exposed, reinfection rate, (rate at which
an exposed person becomes infected or incubation rate) rate
of recovery, quarantine rate, death rate and quarantine period
respectively and S(t) + E(t) + I(t) + Q(t) + R(t) +
D(t) = N.

Approximate Bayesian Computation Sequential
Monte Carlo M nearest Neighbours

Approximate Bayesian Computation (ABC) methods were
developed to infer posterior distributions when evaluating
likelihood functions which are computationally difficult or
prohibitively expensive4. They leverage the efficiency of
modern simulation techniques by substituting the likelihood
calculation with a comparison between observed and
simulated data®. The main idea is to use Baye’s theorem to
approximate the posterior distribution with the knowledge of
the observed data. Let 7z(6) denote the prior distribution for
the parameter vector 8 and the likelihood function for the
data D be denoted by p(D|8), then using the Bayes theorem,
posterior distribution of the parameter 6 is proportional to
m(0)p(D|0). Now we describe the steps for the ABC SMC
MNN method to estimate the posterior distribution for the
parameter vector 8 and get the samples from the posterior
distribution as follows1? :

(i) Fix the number of generations S and the number of
samples to be simulated from the posterior distribution as N.
(if) Fix the tolerance value for each of the generation as
t1, ty, ... , ts. NOW set the generation variable s = 1.

(iii) If the generation variable is s > 1, select the M nearest
neighbours of the parameter vectors 8¢_,, then evaluate the
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covariance matrix X(0:_,,M) for all the samples i =
1,2,...,N.

(iv) Set the sample indicator i=1.

(v) For the first generation i.e. for s = 1, sample 8** is
selected from the prior distribution 7 (8). For generation s >
1, select 6* from the previous generation samples
0L,,0%,,..,6N} with the weights
wh,,wh,, ...,w), }and using 8%, select a random sample
6** from the multivariate normal distribution so that
0"~ N(6*,2(6%, M)).

(vi) If m(6**) = 0, return to step (iv). Else generate the data
D** from the model using the parameter vector 8**.

(vii) If (D|D**) < t, , set Bs(i) = 6™ and set the weight of

the accepted sample corresponding to i as w, =
w(0*), ifs=1
6 ifs>1

S, wiN@ileL_, 56k My’
(viii) If i < N, increase i =i+ 1 and go to step (iv).
(ix) Normalize the weights so that Z?’zl Ws(l) =1.

X)Ifs< G,sett =t + 1, go to step (iv).

where N(.,.) represents multivariate normal distribution
which is used as perturbation kernel in general. Uniform
distribution is used as non-informative perturbation kernel
and multivariate normal distribution as informative
perturbation kernel. Effective exploration of the parameter
space is dependent on choices made regarding tolerance
levels, generational counts, simulation repetitions and the
perturbation kernel.

Data and Simulations

To analyze the evolving nature of COVID-19 over time, we
need parameter estimation that accounts for variability®.
Consequently, we utilize a time-dependent approach to track
these fluctuating trends. In this study we have divided the
data in different time windows. We modeled the COVID-19
disease using the SEIQRD maodel. The data for this analysis
came from Saudi Arabia. It covers the period from March 2,
2020, to June 21, 2020. The data was obtained from
Kaggle'®.

Figure 1: Representing the compartmental diagram for the SEIQRD model
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It includes daily information on active, cumulative and new
cases, as well as deaths and recoveries. Since the parameters
involved in the SEIQRD model are time dependent and
varying with respect to time. we have divided data into five
time windows. First time window starts from day 1 to day 15
and second time window starts from day 16 to day 40, third
starts from day 41 to day 65 and fourth starts from day 66 to
day 85 and fifth time window starts from day 86 to day 110,
We used active cases and deaths as measurable data for the
model. For the first time window, we used data for infected
cases as I(t) and deaths D(t) from day 1 to day 15 in the
Approximate Bayesian Computation sequential monte carlo
M-nearest neighbour sampling method for the samples of the
parameters in the SEIQRD model.

The distance metric is d(D|D**) <t, if and only if

l(1© -1 @) <t & J(D(t) —D™(D)* < t! is used

in the sampling method. The number of generation S=3 is
used in each time window. Table 1 represents the prior
distribution used for the parameters in the ABC SMC MNN
sampling method. M=200 is used for the M-nearest
neighbours.

The initial values of the tolerance sequence for each time
window is given in table 2 which is used to sample the
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parameters using ABC SMC MNN sampling method. The
total number of population of Saudi Arabia on March 2 ,
2020 was N = 35755176 . Initial values for infected and
deaths compartment are taken from the available data and
for the first time window, initial values of quarantined,
recovered were zero. Initial value for Exposed compartment
is taken as E(0) = 1000 and for susceptible S(0) = N —
I(0) —R(0) — Q(0) — D(0) —E(0) and For subsequent
time windows, the initial values for the exposed, quarantined
and recovered compartments were set to the estimated values
of these compartments from the preceding time window.
These estimated values were derived from the SEIQRD
model, utilizing the mean of the sampled parameters from
the final generation of the ABC-SMC MNN sampling
method's posterior distribution.

The ABC SMC-MNN sampling method was applied for
each time window to get the samples of the parameters from
the posterior distribution. For each time window, the
samples obtained from the posterior distribution in the last
generation taking their mean value as true value of the
parameters for the corresponding time window and using
them in the SEIQRD model, we get the estimated value of
the infected and deaths compartment. Table 3 represents the
estimated values of the parameters involved in the SEIQRD
model for each time windows.

Table 1
Representing prior distribution of the parameters used in SEIQRD model.

Parameter

Prior distribution (Truncated Normal distribution)

B (transmission rate)

Truncnorm(lower = -0.01, upper = 0.1 , mean = 1.5e-8, sd = 1e-8)

u (reinfection rate)

Truncnorm(lower = 0.0001, upper = 0.1, mean = 1.6e-4, sd = 1e-4)

y (incubation rate)

Truncnorm(lower = 0.000001, upper = 0.01, mean = 0.015, sd = 0.001)

o (recovery rate)

Truncnorm(lower = 0.01, upper = 0.1, mean = 0.05, sd = 0.01)

A (quarantine rate)

Truncnorm(lower = 0, upper = 0.1, mean = 0.021, sd = 0.01)

6 (death rate)

Truncnorm(lower = 0.001, upper = 0.5, mean = 0.1, sd = 0.01)

¢ (quarantine period)

Truncnorm(lower = 0.001, upper = 0.1, mean = 0.07, sd = 0.01)

Table 2
Representing the sequence of tolerance used in the ABS SMC MNN
Time Window Tolerance sequence (¢}, t}, 1) Infected Tolerance sequence ( t?,t2, t2) Deaths
Day1-—15 (1e4,8e3,5e2) (1e3,8e2,5e2)
Day 16 — 40 (1e4,8e3,7e3) (1e3,8e2,7e2)
Day 41 — 65 (1e5,9e4, 8e4) (1e3,7e2,5e2)
Day 65 — 85 (1e6,8e5,1e5) (1e3,7e2,5e2)
Day 86 — 110 (1e6,8e5, 1e5) (1e3,7e2,5e2)
Table 3
Presenting the estimated values of the parameters involved in the SEIQRD model.
Parameter Day 1-15 Day 16 — 40 Day 41 — 65 Day 65 — 85 Day 86 — 110
B 2.607926e-08 | 3.137336e-08 | 1.906792e-08 2.477616e-08 2.005747e-08
U 1.404689%-04 | 2.180625e-04 | 1.836082e-04 2.233315e-04 1.230543e-04
y 1.025117e-02 1.031941e-02 | 9.927145e-03 1.021641e-02 1.033123e-02
o 4.881843e-02 | 4.086454e-02 | 4.920895e-02 4.590827e-02 5.012280e-02
A 2.548353e-02 1.895990e-02 | 2.071212e-02 2.370133e-02 1.144448e-02
1) 1.061898e-02 9.215500e-02 | 1.053984e-02 1.083446e-02 9.866096e-03
& 7.048349e-02 7.409066e-02 | 7.051973e-02 6.572828e-02 7.009715e-02
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Figure 2: Depicting the Active and Estimated cases

Table 4
Represents the basic reproduction number each time window.
Time Day 1-15 Day16 —40 | Day 41 —65 | Day 65 —85 | Day 86 — 110
Window
R, 10.98043 7.380998 8.473392 11.01232 10.03954

Figure 2 represents the estimated and actual infected.
Estimated cases are obtained by using the parameter values
for each time window in the SEIQRD model. Using the
parameter values of the last window, infected values can be
estimated?®,

Reproduction Number: In infectious disease modeling, the
basic reproduction number (R,) plays a key role in analyzing
outbreak patterns. It represents the average number of
secondary infections caused by a single case in a fully
susceptible population, helping to guide public health
strategies'’. However, R, varies due to factors such as
behavioral shifts, vaccination efforts and viral mutations.
When R, exceeds 1, the infection spreads widely whereas a
value below 1 indicates a natural decline. Since Ry, is highly
sensitive to model parameters, precise estimation is
essential. Many COVID-19 studies have employed the Next
Generation Matrix (NGM) method for this purpose?. Basic
reproduction number for the SEIQRD model can be given

BN . .
by Ry = i Table 4 represents the basic reproduction

number each time window.

Conclusion

In conclusion, this study successfully demonstrated the
strong integration of the SEIQRD model with the ABC-SMC
MNN sampling method for precise parameter estimation in
the complex dynamics of the COVID-19 pandemic in Saudi
Arabia. This study established a robust framework for
analyzing and forecasting the disease's trajectory by
carefully computing the time-varying basic reproduction
number (Ro), a key indicator of disease transmission. It also
accurately estimates essential parameters such as infection,
recovery and mortality rates. Given the pandemic's changing
nature, adaptive models are critical and the time-varying
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technique used here adequately reflects these shifts. The
findings of this study will have major practical implications,
providing Governments and public health authorities with a
data-driven tool for informed decision-making. These
results, which provide a more accurate and thorough picture
of the pandemic's course, can help direct targeted actions,
improve resource allocation and strengthen public health
policies to reduce the disease's impact on the population.
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